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Abstract

Two approaches were taken to make convenient spread sheet calculations of elastic constants
from resonance data and the tables in ASTM C1259 and E1876: (1) polynomials were fit to the
tables; (2) an automated spread sheet interpolation routine was generated. To compare the
approaches, the resonant frequencies of circular plates made of glass, hardened maraging steel,
alpha silicon carbide, silicon nitride, tungsten carbide, tape cast NiO-YSZ, and zinc selenide
were measured. The elastic constants, as calculated via the polynomials and linear interpolation
of the tabular data in ASTM C1259 and E1876, were found comparable for engineering
purposes, with the differences typically being less than 0.5 percent. Calculation of additional v
values at #/R between 0 and 0.2 would allow better curve fits. This is not necessary for common
engineering purposes, however, it might benefit the testing of emerging thin structures such as
fuel cell electrolytes, gas conversion membranes, and coatings when Poisson’s ratio is less than
0.15 and high precision is needed.

Introduction

The elastic constants of isotopic materials can be measured by using a variety of static and
dynamic techniques such as strain gages, impulse excitation, or resonant ultrasound
spectroscopy, and a recent comparison of the techniques has been made (ref. 1). Dynamic
techniques have the advantage of simple test specimen geometry, good precision, and
applicability over a wide range of temperatures. One convenient method is the impulse excitation
technique in which a test specimen such as a rectangular beam or circular plate is excited by a
brief mechanical impulse with a tool (see fig. 1) and allowed to vibrate naturally. The specimen
geometry and support and impact locations are chosen to induce flexural or torsional modes of
vibration. The vibrations are detected with a non-contacting microphone or contact
accelerometer, and are analyzed by a signal processor to determine the fundamental resonant
frequency. The fundamental frequency is used with the specimen geometry and mass to estimate
dynamic elastic properties such as Young’s modulus, Poisson’s ratio, and shear modulus.

This method is nondestructive, sensitive, requires relatively little material, and can be used to
test specimens designed for other purposes such a uniaxial or biaxial flexural strength
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measurement (refs. 2 to 4). It also is useful for monitoring changes in newly developed materials
that contain large amounts of porosity and undergo chemical changes such as reduction or
oxidation during testing and use. Another advantage of the technique is the availability of
American Society for Testing and Materials (ASTM) standards that give detailed guidance on
the technique (refs. 5 and 6).

For a circular plate, the resultant first and second natural vibrations corresponding to torsion
and flexure are measured and used to independently estimate Young’s Modulus. The values are
then used to calculate an average Young’s modulus with the relation (ref. 5)

E=(E,+E,)/2 (1
where:

37.6991£7D°m(1-v)
Kt

_37.6991f7D*ml1-v*)

£ Kt

and £,

(2)

with f; and f> being the first and second natural frequencies, D the disc diameter, ¢ the thickness,
m the mass, v Poisson’s ratio, and K; and K the first and second natural geometric factors. The
shear modulus, G, is calculated from the common relation

: 3
) 3)

Currently, the standards ASTM C1259 and E1876 (refs. 5 and 6) use linear interpolation of
data compiled in tables to determine the constant v as a function of #/R and f;/f> where R is the
disc radius. The constants K; and K are then determined with linear interpolation as a function of
t/R and v. This is inconvenient as three manual interpolations are required per constant, and the
accuracy is reduced because the functions are nonlinear and the interpolations of K; and K>
depend on those of v. Although extremely accurate values of £ and v are not needed for general
engineering purposes, accurate constants are particularly useful in verification of test rigs and
models. Further, rapid, convenient calculations are beneficial if elastic constants are used to
nondestructively monitor material changes.

In order to allow accurate, convenient spread sheet calculations of elastic constants from
plate data, two approaches were taken: (1) polynomials were fit to the data tables Al.1 to A1.5 of
ASTM C1259 and E1876, which are identical and based on the data of Glandus and Martincek
(refs. 7 and 8); and (2) an automated bilinear spread sheet interpolation routine was implemented
(see the app.). The resultant polynomials exhibited residuals of less than 0.5 percent for K; and
K>, and less than 1.5 percent for v, and are sufficient for most engineering purposes.

Comparisons of calculations made with linear interpolation and the polynomials were made for
glass, steel, silicon carbide, silicon nitride, tungsten carbide, tape cast NiO-YSZ and zinc
selenide, and indicate similar results.
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Polynomial Functions

During fitting of the constants, an attempt was made to minimize the residuals while using a
relatively simple polynomial function. This was possible for both K; and K, however reasonable
fits could not easily be made for v. The most difficulty in fitting v was encountered for values of
f2/fi = 1.350, for which v varies by a factor of ~6 and changes from curvilinear behavior to very
linear behavior at small v as shown in figure 2. Thus three separate functions were generated to
describe the range of v given in table Al.1 of C1259. In addition, a wide range fit to the data of
Glandus (ref. 7) that did not include values of v for f5/f; = 1.350 was generated. Other regions of
the table that presented difficulty were additional columns containing several constant values of
v, as with the f>/f; = 1.350 data, and columns containing linearly increasing values of v as a
function of #/R. Such regions of constant v or linearly changing v did not follow a smooth trend
as might be expected for a physical phenomenon. This may have resulted from the numerical
accuracy available when Martincek did the calculations and the use of a nomogram to present the
data, and the fact that many of the columns and rows in table A1l.1 were generated by
interpolation of the data of Glandus (ref. 7), rather than from direct calculation. Refinement of
the calculations for v as a function of #/R and f>/f; might allow better curve fits over a wider
range.

An example of constant and linearly varying v is shown in figure 2. Unfortunately, these
complications tend to occur at small #/R ratios, which are commonly used in the mechanical
testing of structural ceramics such as membranes, fuel cell elements, and coatings that are being
manufactured in very thin sections (#/R < 0.05) and are required to carry thermal and structural
loads. Fortunately, the complications occur for v values (< 0.15) not usually exhibited by
ceramics (typical v =0.16 to 0.30) and the curves are relatively flat. For measurements of thin
structures exhibiting low Poisson’s ratio, improved values of v between #/R = 0 and 0.2 might be
beneficial.

For 0 <#/R <0.500, v can be described for 1.375 < f5/f; < 1.525, 1.525 < fo/f; <1.725, and
1.725 < f5/f1 £ 1.900 by the expression:

-1 2 -2 -1 3
v=a+ b(ij + C{QJ + d(iJ + e{QJ + f (LIQ] + g[ij 4)
rR) S, r) 7 R\, R
-3 -2 2 -1
A7) (3 )
/i RA R\ fi

where the constants a through j are given in table 1. The fits are within 1 percent of the data in
table A1.1 C1259. For the wider range of 0.00 < #/R < 0.500, and 1.400 < f>/f; < 1.900, v can be
estimated within 1.3 percent of the data of Glandus (ref. 7) by using the constants in the last row
of table 1 with equation (4). The v values corresponding to f>/f; = 1.350 were not included in the
fit because they decreased the quality of fit and are not commonly encountered in experimental
measurements of ceramics. Examples of fits to the data are shown in figures 3 and 4.

For fitting of K; and K data, minor difficulties occurred around some data points. Although

Glandus added many intermediate data points to the range of K; and K, given by Martincek, he
appears to have re-used Martincek’s data directly without adding precision: the data in Glandus’s
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tables are given to three places; however, many of the data points are identical to those of
Martincek which were originally reported to two places. Evidently, Glandus simply added a third
decimal (i.e., a zero) to Martincek’s data rather than recalculating those points to a higher
precision.

TABLE 1.—CONSTANTS FOR ESTIMATION OF V FROM EQUATION (4)

f>/fj range
Coefficient 1.375-1.525 1.525-1.725 1.725-1.900 1.400-1.900
a 0.7161 —4.3343 —8.0933 —4.30526
b —0.6502 2.1017 3.4452 0.38999
c —4.1377 5.6718 12.2471 6.10124
d 1.0459 0.5107 —2.2461 0.19582
e 4.2095 —2.2025 —6.1198 —2.76353
f 0.6056 —2.5965 —3.2070 —0.47553
g —0.5148 —0.5109 —0.0872 —0.62008
h -1.1313 0.2792 1.0725 0.45518
i —0.1247 0.7924 0.7117 0.11816
j —0.3197 0.0283 1.4525 0.31933

For 0 <#/R <0.500 and 0 < v<0.500, K; and K> can be described by the expression:

t Y s s
£a+b(Rj+c(Rj +dv+ev +va

K, = 5 (%)
(] + g(;j + h(;j +iv+ jvzl

where the constants a through ;j are given in table 2. The fits are within 0.5 percent of the data in
table A1.2 and A1.4 of C1259. For the narrow range of 0.100 < #/R < 0.200 and 0.14 < v<0.34
given in tables A1.3 and A 1.5, K; and K can be described by the expression:

2 3
t t t t
K =a+b —|+cv+d|—| +ev’ + fl = v+g| — 6
e (R) ; (Rj o f(ij g(Rj ©
2
+h’ +i(i)v2 +j(ij v
R R

The fits are within 0.1 percent of the data. Examples of fits to the data are shown in
figures 5 to 8.
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TABLE 2.—CONSTANTS FOR EQUATIONS (5) AND (6)

0<#R<0.500and 0 < v<0.500 0.100 < #/R <0.200 and 0.14 < v<0.34
Coefficient K; K, K; K,
a 6.1528 8.2584 6.2305 8.3901
b 0.5085 -2.3794 —1.7997 -2.9434
c 0.8825 6.6164 -2.4825 2.0928
d -3.9037 2.3540 3.6354 5.0895
e -5.4739 -9.1109 -0.3022 1.9810
f 3.9297 —-0.9923 3.6488 2.7693
g 0.1364 -0.2142 -9.3417 —-18.3125
h 0.9120 1.7467 -2.2626 -3.0307
i -0.3628 —-0.0475 —3.3588 -3.1336
Jj -0.3612 -0.9262 —10.7968 —-15.1250

Experimental Results

In order to directly compare test results using linear interpolation and the polynomials,
circular plates machined in accordance with the procedures of ASTM C1161 and C1499
(refs. 1 and 2) were tested. The dimensions and mass of all the test specimens were measured
with a resolution of 0.001 mm and 0.0001 g, respectively. The plates were typically 50.1 mm in
diameter and ranged in thickness from 1.54 to 4.53 mm (#/R = 0.06 to 0.18), and were intended
for strength testing. The materials included glass, hardened maraging steel, alpha silicon carbide,
silicon nitride, tungsten carbide, NiO-Y'ttria-stabilized zirconia (YSZ), and zinc selenide. The
75mol%NiO-YSZ was an unreduced anode material with ~32 percent porosity. It was
manufactured by tape casting and sintered at 1200 °C for 2 hours as part of a fuel cell program
being conducted at NASA Glenn Research Center (ref. 9). The zinc selenide was optical grade
material made by chemical vapor deposition and intended for use on the International Space
Station (ref. 10).

The test specimens were supported on the torsional or flexural nodal lines, as necessary, with
foam rubber supports as shown in figure 1 and lightly impacted with a steel tipped hammer. The
results are summarized in tables 3 and 4, and indicate that the differences in Poisson’s ratio and
Young’s modulus as estimated from interpolation and the polynomials are usually less than 0.5
percent.

Conclusion

Polynomial fits and linear interpolation of the data tables of ASTM C1259 and E1876
produce comparable estimates of Poisson’s ratio and Young’s modulus for engineering purposes.
For glass, hardened maraging steel, alpha silicon carbide, silicon nitride, tungsten carbide, NiO-
YSZ, and zinc selenide the differences as calculated from polynomials and interpolation were
typically less than 0.5 percent. Calculation of additional v values at #/R between 0 and 0.2 would
allow better curve fits and might benefit the testing of emerging thin structures such as fuel cell
electrolytes, gas conversion membranes, and coatings when Poisson’s ratio is less than 0.15 and
high precision is needed. However, the current values are sufficient for common engineering
purposes.
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Appendix

The following Microsoft® Excel macro' was used to linearly interpolate values ofv, K, and
K. The interpolated values were used with the physical data in tables 3 and 4 to estimate £; and
E; which were than averaged to find the Dynamic Young’s Modulus (E).

'USER DEFINED FUNCTION

"XYinterpolate

'Interpolates values from a named 2D table for row(x) and column(y) variables.

"The named table should include the row and column variables.

'Cell (1, 1) should not contain a numeric value or formula.

'Row variables should increase to the right. Column variables should increase downwards.

Static Function XYinterpolate(xyarray As Variant, X, y As Single) As Single
Dim nl, ml as integer
Dim x1, x2, y1, y2, Rylx1, Rylx2, Rylx1x2, Ry2x1, Ry2x2, Ry2x1x2 As Single
x1 = Application.HLookup(x, xyarray, 1)
nl = Application.Match(x1, xyarray.Rows(1), 0)
x2 = xyarray.Cells(1, n1+1).Value
y1 = Application.VLookup(y, xyarray, 1)
ml = Application.Match(y1, xyarray.Columns(1), 0)
y2 = xyarray.Cells(m1+1, 1).Value
Rylx1 = xyarray.Cells(m1, nl)
Ry1x2 = xyarray.Cells(m1, n1+1)
Rylx1x2 = (x-x1)/(x2-x1)*(Ry1x2-Ry1x1)+Rylx1
Ry2x1 = xyarray.Cells(m1+1, nl)
Ry2x2 = xyarray.Cells(m1+1, n1+1)
Ry2x1x2 = (x-x1)/(x2-x1)*(Ry2x2-Ry2x1)+Ry2x1
XYinterpolate = (y-y1)/(y2-y1)*(Ry2x1x2-Ry1x1x2)+Ry1x1x2
End Function

This macro was courtesy of Dennis Kirk Engineering, denniskb@ozemail.com.au.
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Figure 1.—Schematic of support setup for Impulse Excitation Technique: (a) torsional mode
of vibration and (b) flexural mode of vibration.
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Figure 2.—vV as a function of /R for regions exhibiting linear variation or no
variation of v with {/R. The data is from table A1.1 of ASTM C1259 (ref. 4).
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Figure 3.—V as a function /R for various f»/f1. Solid lines are equation 4, solid symbols

are data points from table A1.1 of ASTM C1
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Figure 4.—V as a function {/R for various fo/f1. Solid lines are equation (4) wide
range fit, solid symbols are data points from table A1.1 of ASTM C1259 (ref. 4)
and references 6 and 7.
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Figure 5.—K4 as a function {/R for various V. Solid lines are equation (5), solid symbols
are data points from table A1.2 of ASTM C1259 (ref. 4) and references 6 and 7.
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Table A1.5 Curve Fit
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Figure 6.—K4 as a function /R for various V. Solid lines are equation (6), solid symbols
are data points from table A1.3 of ASTM C1259 (ref. 4) and references 6 and 7.
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Figure 7.—K> as a function {/R for various V. Solid lines are equation (5), solid symbols
are data points from table A1.4 of ASTM C1259 (ref. 4) and references 6 and 7.
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Figure 8.—K> as a function {/R for various V. Solid lines are equation (6), solid symbols
are data points from table A1.5 of ASTM C1259 (ref. 4) and references 6 and 7.
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